
Vol.: (0123456789)
1 3

Plant Soil 
https://doi.org/10.1007/s11104-024-06801-9

RESEARCH ARTICLE

Root endophytic bacterial communities are shaped 
by the specific microbiota associated to mycorrhizal 
symbionts

Gergely Ujvári   · Arianna Grassi   · Luciano Avio   · Irene Pagliarani   · Caterina Cristani   · 
Manuela Giovannetti   · Monica Agnolucci   · Alessandra Turrini 

Received: 19 February 2024 / Accepted: 6 June 2024 
© The Author(s) 2024

Abstract 
Background and aims  Arbuscular mycorrhizal fungi 
(AMF) are beneficial soil microorganisms establish-
ing mutualistic symbioses with most crop plants 
and promoting plant growth and health. AMF ben-
eficial activities are complemented by their associ-
ated microbiota, leading to synergistic interactions 
positively affecting plant performance. In this work 
we assessed whether AMF may act as drivers of root 
bacterial endophytes, facilitating root colonization of 
host plants by their associated bacteria.
Methods  Two AMF isolates were used, Funneli-
formis mosseae from Indiana (USA) and Septoglomus 
sp. from Tuscany (Italy) in an original experimental 
microcosm system, utilizing micropropagated plants 

of Prunus persica x Prunus amygdalus inoculated 
with either intact or mechanically crushed AMF 
spores, the former able and the latter unable to estab-
lish the symbiosis. Spore and root endophytic bacte-
rial communities diversity were analysed by Illumina 
Miseq sequencing.
Results  This study revealed that AMF with their 
associated bacteria can shape the root endophytic 
bacterial communities, inducing differential recruit-
ment depending on the composition of spore-associ-
ated microbiota. Such data were consistent between 
two AMF isolates, associated with diverse bacterial 
communities, as shown by PERMANOVA, Bray 
Curtis dissimilarity, hierarchical clustering and indi-
cator species analyses. Moreover, specific bacterial 
taxa were found exclusively in mycorrhizal roots. 
Our findings suggested also a differential recruitment 
depending on the ability of AMF to establish mycor-
rhizal symbioses.
Conclusion  This work revealed that AMF repre-
sent drivers of the endophytic bacterial communities 
diversity and composition, facilitating root coloniza-
tion of host plants by their associated bacteria, that 
become an integral part of the root microbiome as 
endophytes.
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Introduction

Plants live associated with multifunctional and com-
plex beneficial microbial communities, which estab-
lish intimate relationships with their aboveground and 
belowground tissues. These microorganisms show 
multiple diverse activities, strongly affecting plant 
metabolism, nutrition and health (Philippot et  al. 
2013). Among such microbiota, arbuscular mycor-
rhizal (AM) fungi (AMF) represent one of the most 
important group, as they are able to colonize the roots 
and establish mutualistic symbioses with most crop 
plants. AMF are obligate biotrophic symbionts and 
obtain carbon from the plant, in exchange of soil min-
eral nutrients, absorbed and translocated to the host 
by the large network of hyphae growing from myc-
orrhizal roots into the soil environment (Smith and 
Read 2008). AMF promote plant growth and health 
and increase plant tolerance to biotic and abiotic 
stresses, thus reducing the need of chemical fertilizers 
and pesticides (Bitterlich et al. 2018; El-Sawah et al. 
2023; Gianinazzi et al. 2010; Sikes et al. 2009).

AMF beneficial activities cannot be considered 
separately from the large and diverse bacterial com-
munities living in intimate association with mycorrhi-
zal roots, spores, sporocarps and extraradical hyphae, 
originating a complex and metabolically active envi-
ronment called mycorrhizosphere (Faghihinia et  al. 
2023). Different AMF may harbour diverse bacte-
rial communities, mainly represented by species and 
genera belonging to Pseudomonadota, Actinobac-
teriota, Bacillota and Bacteroidota (Agnolucci et  al. 
2015; Cruz et al. 2008; Emmett et al. 2021; Iffis et al. 
2016; Long et  al. 2008; Roesti et  al. 2005). Several 
works reported that AMF-associated bacteria showed 
multifunctional activities as plant growth promoters 
(PGP) by fixing nitrogen, solubilizing phosphates, 
mineralizing phytates, producing siderophores and 
plant hormones (Agnolucci et al. 2019a; Battini et al. 
2016; Cruz and Ishii 2011; Sharma et al. 2020) and as 
mycorrhiza helpers (MH) by promoting spore germi-
nation, mycelial growth and symbiosis establishment 
(Cruz and Ishii 2011; Fernández Bidondo et al. 2016; 
Sangwan and Prasanna 2022). Overall, such ben-
eficial bacteria may promote and complement AMF 
functional activities, leading to synergistic interac-
tions positively affecting plant performance (Barea 
et  al. 2002; Giovannini et  al. 2020; Turrini et  al. 
2018). Actually, recent findings demonstrated that 

P-mobilizing bacteria improve plant growth and P 
uptake in mycorrhizal wheat, maize and alfalfa (Bat-
tini et al. 2017; Wahid et al. 2020; Wang et al. 2023; 
Zhang et al. 2014).

Interestingly, a recent study revealed that the 
inoculation of two durum wheat cultivars with Fun-
neliformis mosseae increased the abundance of Act-
inobacteriota and Bacteroidota inside plant roots. 
Moreover, it favoured the endophytic establishment of 
some important PGP genera (Agnolucci et al. 2019b). 
Another work reported that mycorrhizal symbiosis 
affected the community composition of endophytic 
bacteria in lettuce (Han et al. 2023). Alas, these two 
studies did not investigate the communities of bacte-
ria associated with the mycorrhizal fungus utilised as 
inoculum. Specific co-inoculation experiments with 
rhizobia and AMF showed that root colonization and 
nodule formation by N2-fixing bacteria were facili-
tated by the presence of AMF (de Novais et al. 2020; 
Meghvansi et  al. 2008; Tajini et  al. 2011). These 
results are noteworthy, as it has long been known that 
bacterial root endophytes are able to promote plant 
performance, providing manifold benefits by PGP 
activities (Hardoim et al. 2015; Liu et al. 2017; San-
toyo et al. 2016).

Bacterial endophytes have been found in the roots 
and stems/leaves of a wide variety of host plants, 
including important food crops in different ecosys-
tems and geographic areas. The density of endophytic 
bacteria can reach 104–108 and 103–104 bacterial cells 
per g of root and stem/leaf tissues, respectively (Hall-
mann 2001). Communities of bacterial root endo-
phytes are mainly composed by Pseudomonadota, 
Actinobacteriota, Bacteroidota and Bacillota, but 
other phyla, such as Acidobacteriota, Chloroflexota, 
Cyanobacteriota, Planctomycetota, Mycoplasmatota 
and Verrucomicrobiota may also occur (Ujvári et al. 
2021). Root microbiome composition and diversity is 
influenced by diverse factors, including plant geno-
type, nutrient status, phenological stage, stress condi-
tions, but also season, farming practices and soil type 
(Hardoim et al. 2015; Liu et al. 2017).

In this work, we addressed the question as to 
whether AMF may act as drivers of endophytic root 
microbiome diversity and composition, facilitating 
root colonization of host plants by their associated 
bacteria that could become an integral part of the root 
microbiome as endophytes. Since different AMF may 
harbour diverse bacterial communities, the present 
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study was carried out utilizing two AMF isolates, 
maintained in our culture collection using Cichorium 
intybus L. and Medicago sativa L. as host plants, dif-
fering for their taxonomic and geographic origins: 
F. mosseae IN101C isolated from Indiana, USA and 
Septoglomus sp. 14W1, isolated from Tuscany, Italy. 
To answer the question, a targeted microcosm system 
was set up, utilizing in  vitro-produced micropropa-
gated plants inoculated with either intact or mechani-
cally crushed AMF spores.

Endophytic microbiome composition and diversity 
of the roots of micropropagated plantlets inoculated 
with the two AMF was investigated by PCR-based 
Illumina MiSeq technology, utilized for sequenc-
ing the V3-V4 hypervariable region of 16S rRNA 
gene. This study represents the basis for the manage-
ment of root beneficial endophytes, AMF and bacte-
ria, whose synergistic activity may provide support 
for their combined implementation in sustainable 
agroecosystems.

Materials and methods

Plant and fungal material

Micropropagated plantlets of a selection of Pru-
nus persica x Prunus amygdalus GF677 (hereafter 
GF677) were obtained from the biotechnological 
firm Meristema® (Cascine di Buti, Tuscany, Italy). 
After 5 weeks in the rooting medium, plantlets were 
removed from the in vitro cultures, their roots were 
washed in sterile distilled water and inoculated as 
described below.

The AMF used were two geographically and taxo-
nomically different isolates, maintained in the IMA 
collection of the Microbiology Laboratories, Depart-
ment of Agriculture, Food and Environment – DAFE, 
University of Pisa, Italy: F. mosseae (T.H. Nicolson & 
Gerd.) C. Walker & A. Schüßler strain IN101C (iso-
lated from a native prairie site near West Lafayette, 
IN, USA, originally provided by INVAM, Morgan-
town, WV, USA, and since 1997 maintained in Pisa) 
and Septoglomus sp. strain 14W1 (isolated from an 
agricultural field within the UNESCO Man and Bio-
sphere Reserve near Pisa, Tuscany, Italy and main-
tained in the IMA collection since 2016). The two 
fungal isolates were grown as pure pot cultures with 
chicory (Cichorium intybus L.) and alfalfa (Medicago 

sativa L.) as host plants, and in the same substrate 
and environmental conditions. Spores (IN101C) and 
spore clusters (14W1) were extracted from pot cul-
ture soil by wet-sieving and decanting, and intact, 
healthy spores were manually collected with a capil-
lary pipette or forceps under a dissecting microscope 
(Wild/Leica, Wetzlar, Germany).

Experimental design

For the experiment, 50 intact spores (IN101C) or 15 
intact spore clusters (14W1) were placed on sterile 
tissue paper, which was wrapped around plant roots. 
These were referenced as belonging to RIND and 
R14W1 treatments, respectively. The same quantity 
of spores was mechanically crushed with sterile pes-
tles in Eppendorf tubes and checked under the dis-
secting microscope for complete disruption, before 
their utilisation to inoculate additional plantlets, as 
described above. These plantlets represented treat-
ments RXIND and RX14W1. With the aim of assess-
ing the possible occurrence of environmental root 
endophytes, replicate uninoculated plantlets were set 
up in the same way. These are referenced as belong-
ing to treatment RC. Nine replicates for each treat-
ment were used. Plantlets were transferred in 50 mL 
Falcon tubes containing moist sterile quartz grit. The 
Falcon tubes were closed in transparent Sun bags 
(Sigma-Aldrich, St. Louis, MO, USA) and maintained 
in a growth chamber with 24/21  °C  day/night tem-
peratures and 16/8 h light/dark cycle. The experiment 
was set up in a biological safety cabinet, using sterile 
tools and materials. Plants were watered as needed 
and after the second week, 2  mL (once a week) of 
sterile modified Hoagland’s solution (Hoagland and 
Arnon 1938) containing ¼ strength of the standard 
concentration of KH2PO4, were added to each system. 
After 10 weeks, the plantlets were harvested and the 
roots were sterilized as indicated by Sun et al. (2008), 
in order to remove the superficial microbial contami-
nants. The success of the sterilization process was 
assessed on 3 × 100 μL of water from the last wash-
ing, which were spread-plated on Tryptic Soy Agar 
(TSA) (Sigma-Aldrich) medium and incubated for 
72 h at 28 °C.

For total DNA extraction and subsequent high-
throughput sequencing, three biological samples 
per treatment, each comprised of two pooled root 
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systems, were prepared, in a biological safety cabinet, 
using sterile tools and stored at -80 °C.

To evaluate mycorrhizal colonization, whole root 
systems of three replicate plantlets of each treatment 
were used. The percentage of mycorrhizal root length 
was evaluated using the grid-line intersect method 
after root clearing and staining (Giovannetti and 
Mosse 1980; Turrini et al. 2017).

DNA extraction, amplification and 16S rRNA gene 
amplicon sequencing

Genomic DNA was extracted from 250 mg of root tis-
sue by grinding with mortar and pestle in liquid nitro-
gen using the DNeasy® PowerSoil® Pro Kit (Qiagen 
GmbH, Hilden, Germany), according to the manufac-
turer’s instructions and eluted in 50 μL 10 mM Tris 
buffer. In addition, DNA was also extracted from trip-
licate samples of 50 spores of IN101C and 15 spore 
clusters of 14W1 used in the experiment (indicated as 
SIND and S14W1, respectively). The extracted DNA 
was checked for successful amplification and stored 
at -20 °C to be used for Illumina MiSeq sequencing. 
Polymerase chain reaction (PCR) amplification of the 
hypervariable regions V3-V4 of the 16S rRNA gene 
was performed using the Pro341F and Pro805R prim-
ers (Takahashi et al. 2014). Amplicons were obtained 
using the Platinum™ Taq DNA Polymerase High 
Fidelity (Thermo Fisher Scientific, Waltham, MA, 
USA). Cycle conditions were an initial step at 94 °C 
(1  min.); 25 cycles of 94  °C (30  s.), 55  °C (30  s.), 
68  °C (45  s.); a final extension at 68  °C (7  min.). 
Libraries were purified using Agencourt AMPure XP 
(LABPLAN; Naas, Ireland) according to the Illumina 
metagenomic sequencing library protocol. Dual indi-
ces and Illumina sequencing adapters from the Illu-
mina Nextera XT index kits v2 B and C (Illumina, 
San Diego, USA) were added to the target ampli-
cons in a second index PCR step, according to the 
Illumina metagenomic sequencing library protocols 
to generate sequencing index libraries. Sequencing 
was performed as a 2 × 300 bp paired-end run on the 
Illumina® MiSeq™ platform. The NGS procedure 
was performed by BMR Genomics (Padua, Veneto, 
Italy). Bacterial library preparation and demultiplex-
ing were carried out using the Microbial Ecological 
tool QIIME2 (Bolyen et  al. 2019) version 2021.4.0 
pipeline. The high throughput bacterial sequence 
reads were pre-processed using Cutadapt v.10 (Martin 

2011) included in the QIIME2 to eliminate adapter 
and unwanted primer, followed by denoising, chime-
ras’ removal, dereplication and OTUs construction 
using DADA2 (Callahan et al. 2016) at 99% accuracy 
level. Alignment and taxonomic assignment of bacte-
rial OTUs were done against the Silva (Quast et  al. 
2012) database version 138. The sequencing data are 
deposited in the GenBank database with accession 
numbers PP343280—PP344592.

Statistical analyses

We determined the rarefaction curves to esti-
mate whether the number of screened sequences 
was sufficient to capture endophytic diversity of 
each treatment (Supplementary Material Fig.  S1). 
Differences in bacterial endophytes commu-
nity structures among treatments were assessed 
by Permutational Multivariate Analysis of Vari-
ance (PERMANOVA) on Bray–Curtis distances 
(nperm = 999). Diversity indices such as Richness 
(S), Shannon entropy (Hs), Simpson’s dominance 
(D), were calculated using PAST software (Ham-
mer et al. 2001) version 4.12.

Indicator species analysis (Dufrene and Legendre 
1997), was used to identify the endophytic bacterial 
OTUs indicative of a given inoculation treatment. 
The indicator value (IndVal) indicated the strength 
of association, while the statistical significance 
of association was tested using a permutation test 
(nperm = 999) at p ≤ 0.05. All the statistical analyses 
were carried out using PAST version 4.12.

Morpheus-Broad Institute (https://​softw​are.​broad​
insti​tute.​org/​morph​eus) software was used for the 
generation of the hierarchical clustering and the heat-
map, using average linkage analysis method with one 
minus Pearson’s correlation as the metric. Root endo-
phytic bacterial communities shared among plants 
inoculated with intact and crushed spores and uninoc-
ulated were defined by Venn diagrams, drawn using 
BioVenn at https://​www.​biove​nn.​nl/​index.​php.

Results

Bacterial communities of spores and root endophytes

Illumina sequencing produced a total of 383,837 
bacterial reads relative to the V3-V4 region of 16S 

https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
https://www.biovenn.nl/index.php
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rDNA, which were clustered in 1,382 operational 
taxonomic units (OTUs) after merging, trimming, 
and chimera filtering steps. Overall, 1,103 OTUs 
were grouped in 274 bacterial genera, 169 families, 
56 classes, and 20 phyla, mostly represented by Pseu-
domonadota and Actinobacteriota (63.5%). In addi-
tion, 279 OTUs were grouped in 83 taxa which were 
not identified at the genus level, and which belonged 
mainly (74.1%) to Pseudomonadota and Actinobacte-
riota (Fig. S2).

Diversity and composition of bacterial microbiota 
associated with AMF spores

The reads of bacterial origin obtained from the two 
spore inocula were 364,740, which clustered in 1,325 
OTUs. The number of phyla retrieved in IN101C 
and 14W1 spores, was 20 and 15, respectively, with 
about 65% of reads belonging to Pseudomonadota 
and Actinobacteriota. At the family level, 139 taxa 
were identified, 123 and 87 in IN101C and 14W1 
spores, respectively. The total number of identified 
genera was 205, comprising 821 OTUs, while other 
504 OTUs, unidentified or uncultured, clustered in 
138 taxa. The analysis of diversity within each spore 
community (alpha diversity) showed a richness of 
1,051 and 399 OTUs in IN101C and 14W1, respec-
tively, while the richness in identified genera was 181 
and 105. Similar dominance levels were found, as 
shown by Simpson (0.04 vs 0.06) and Shannon (3.7 vs 
3.4) indices. The spores of the two AMF shared 125 
OTUs (Fig. 1) and 81 identified genera.

The most frequent genera (i.e. those with a fre-
quency higher than 4% of total reads from each spore 
community) in IN101C spores were Haliangium, 
Sphingomonas, Nocardioides, Lysobacter, and Bacil-
lus, and in 14W1 Massilia, Lysobacter, Paenarthro-
bacter, Ramlibacter, Rhizobium group, and Bacillus 
(Fig. 2).

Many reads (about 32% and 24% of total reads 
from IN101C and 14W1 spores, respectively) 
were not identified at the genus level. Most of 
them belonged to Micrococcaceae, Comamona-
daceae, Microscillaceae from both fungal species, to 
Diplorickettsiaceae, Roseiflexaceae and AKIW781 
from IN101C, and to Vicinamibacterales and Oxalo-
bacteriaceae from 14W1. The two microbial com-
munities showed increasing levels of dissimilarity 
from phylum to OTU, as measured by Bray–Curtis 

distances. Values of dissimilarities were 0.26 at the 
phylum level, 0.45 at the family level, 0.67 at the 
genus level, 0.81 at the OTU level, showing that the 
bacterial communities associated with the two AMF 
were very different.

The data obtained showed that the spores of the 
two AMF isolates were characterised by diverse bac-
terial communities.

Root endophytic bacterial communities of inoculated 
plants as compared with those of AMF spores

Overall, the number of reads detected in inoculated 
roots was 18,580, while in the uninoculated roots 
only 517 reads were detected, showing that environ-
mental contamination was negligible. The numbers of 
OTUs retrieved in inoculated roots (105), compared 
with those occurring in spore bacterial communities, 
were drastically reduced (5 and 13% in IN101C and 
14W1, respectively). Most reads retrieved in inocu-
lated roots (from 51 to 87%) matched with those 
belonging to the bacterial OTUs retrieved in the spore 
samples analysed.

The endophytic bacterial communities of the roots 
inoculated with the two AMF varied significantly 
at OTU level, as shown by two way PERMANOVA 
analysis (F = 2.83, P = 0.0004). The multivariate anal-
ysis (PERMANOVA) performed on indicator species 
OTUs (see Fig.  7), confirmed the important role of 

125926 274

SIND

S14W1

Fig. 1   Venn diagrams showing the number of bacterial OTUs 
associated to Funneliformis mosseae IN101C (SIND) and Sep-
toglomus sp. 14W1 (S14W1) spores
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the two different fungal isolates in shaping the com-
munities (F = 7.93, P = 0.0002).

The data revealed that the two AM symbionts, 
whose spores were associated with different bacterial 
communities, significantly affected the diversity and 
composition of root bacterial endophytes.

Mycorrhizal colonization of roots inoculated with 
intact or crushed spores

Both IN101C and 14W1 AMF successfully colo-
nized the roots of GF677 plants inoculated with 
intact spores, with mycorrhizal root length ranging 

Fig. 2   Pie charts showing 
the relative abundance of 
the different predominant 
bacterial genera associated 
to Funneliformis mosseae 
IN101C (SIND) (A) and 
Septoglomus sp. 14W1 
(S14W1) (B) spores
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from 25 to 41%. Colonized roots produced large 
amounts of spores and extraradical mycelium 
(Fig. 3). No mycorrhizal colonization was detected 
in the roots of the plants inoculated with crushed 
spores and in uninoculated plants.

Root endophytic bacterial communities of plants 
inoculated with intact or crushed spores

The highest numbers of reads were retrieved in 
treatments with intact spores, R14W1 and RIND, 
7,493 and 5,713, respectively, while treatments 
with crushed spores, RX14W1 and RXIND, yielded 
lower numbers, 885 and 4,489, respectively. Over-
all, 59 and 53 OTUs were detected in roots inocu-
lated with IN101C and 14W1 spores. Among such 
OTUs, 29 and 24, respectively, matched with those 
retrieved in the spore samples analysed (Fig. S3).

Exclusive OTUs retrieved in RXIND decreased 
to 18, compared with 28 found in RIND, while 13 

were shared. The decrease was more marked in 14W1 
treatments, as exclusive OTUs in RX14W1 were 7, 
compared with 35 found in R14W1, while 11 were 
shared (Fig. 4).

The phyla Pseudomonadota and Bacteroidota 
were well represented (34.7 ± 2.8% and 23.8 ± 5.3%), 
occurring in all the samples. Actinobacteriota were 
also well represented (28.4 ± 9.6%), mostly in RXIND 
(56.5%). Myxococcota, which was the fourth phylum 
in abundance, was absent in RXIND. Interestingly, 
Bacillota, largely represented in spore communities, 
were rare (less than 1% in RIND and RXIND) or 
absent (in R14W1 and RX14W1).

The analysis of bacterial families showed that 
in the roots inoculated with both intact and crushed 
spores of the two AMF, the number of families 
ranged from 12 to 23, mainly represented by Chitin-
ophagaceae and Micromonosporaceae. Besides, Hali-
angiaceae was detected in RIND (13.2%) and absent 
in RXIND, Comamonadaceae represented 18% in 

A B

E

F

C D

H I

Fig. 3   Light photomicrographs of fungal structures formed 
by Septoglomus sp. 14W1 and Funneliformis mosseae IN101C 
in the roots of GF677 micropropagated plants 10 weeks after 
inoculation with intact spores. A, B) Septoglomus sp. 14W1 
spores colonizing roots. Scale bars: A) 800  μm; B) 50  μm; 
C) F. mosseae IN101C spores colonizing roots and extraradi-
cal mycelium growing from the roots into the surrounding 

environment, scale bar: 500  μm; D) appressoria produced by 
F. mosseae IN101C on the root surface, scale bar: 25 μm. E) 
Septoglomus sp. 14W1 intraradical hyphae, scale bar: 40 μm; 
F) Septoglomus sp. 14W1 intracellular arbuscule, scale bar: 
20  μm; G) Septoglomus sp. 14W1 entry point, scale bar: 
30  μm; H, I) F. mosseae IN101C intraradical hyphae, scale 
bars: 40 μm and 25 μm, respectively
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mycorrhizal roots and only 0.3% in RXIND. Con-
versely, Streptomycetaceae was detected in RXIND, 
where the family represented 25% of the total 
sequences vs 0.8% in mycorrhizal roots.

Among the IN101C spore-associated bacterial 
genera, Haliangium, Actinoplanes, Stenotropho-
monas, Hyphomicrobium, D05-2 and VHS-B3-70 
were exclusively retrieved in mycorrhizal roots inocu-
lated with intact IN101C spores, while among those 
of 14W1, Streptomyces, Devosia, Desmonostoc_
PCC-74, Azospirillum, Piscinibacter, 0319-6G20, 
Bradyrhizobium and Mycobacterium, were exclu-
sively found in mycorrhizal roots inoculated with 
intact 14W1 spores.

The main shared genera, detected in the two endo-
phytic communities of RIND and RXIND, were rep-
resented by Niastella (22.1% vs 11.7%), Actinoplanes 
(13.4% vs 5.1%), Rhizobium (7.2% vs 10.3%) and 
Steroidobacter (4.3% vs 14.1%). The genera charac-
terizing RIND community were Hydrogenophaga 
(18%) and Haliangium (13.2%), and those charac-
terizing RXIND were Saccharothrix (25.2%) and 
Streptomyces (25.2%) (Fig.  5). On the other hand, 
the main shared genera detected in the roots inocu-
lated with intact or crushed 14W1 spores (R14W1 
and RX14W1) were represented by Niastella (17.1% 
vs 29.8%), Haliangium (14.4% vs 11.1%), Ramlibac-
ter (9.5% vs 4.3%), Actinoplanes (7% vs 18.4%), and 
Steroidobacter (5.7% vs 5.7%). The genera Strepto-
myces (14%), and 0319-6G20 (7.5%) characterized 
R14W1 community, while Rhizobium (5.7%) and 

Variovorax (12.6%) characterized RX14W1 commu-
nity (Fig. 5).

Hierarchical clustering analysis showed that bacte-
rial endophytic communities of roots inoculated with 
IN101C intact spores were different from those inoc-
ulated with crushed ones. By contrast, endophytes 
occurring in the roots inoculated with 14W1 were 
similar, regardless of the spore inoculum treatment 
(Fig. 6).

Indicator species analyses of endophytic commu-
nities retrieved in the roots of plants inoculated with 
intact or crushed spores showed characteristic spe-
cies associated with each different inoculation treat-
ment (P < 0.05) (Fig.  7). In particular, four OTUs 
(OTU23, OTU44, OTU55, OTU58), which corre-
sponded to Niastella populi (Indval = 82.5), Actino-
planes xinjiangensis (Indval = 50.1), Niastella sp. 
(Indval = 66.7) and uncultured Hyphomicrobium sp. 
(Indval = 66.7) were associated with the roots inocu-
lated with intact IN101C spores, while only OTU25, 
which corresponded to Cupriavidus alkaliphilus (Ind-
val = 66.7) was found strongly associated to the roots 
of crushed IN101C spores (Fig.  7). Three different 
OTUs were found associated with roots inoculated 
with 14W1 intact spores (OTU72, OTU83, OTU89, 
Indval = 81.7, 66.7, 66.7, respectively) which cor-
responded to uncultured Ramlibacter sp., Rhizobium 
sp. and Methylobacillus sp. Three OTUs (OTU45, 
OTU70, OTU73, Indval = 45.4, 69.2, 60.5, respec-
tively), were found associated with roots inoculated 
with 14W1 crushed spores (Fig. 7) and corresponded 

RXIND 
RIND 

18 13 28 

A B 

7 11 35 

RX14W1 

R14W1 

Fig. 4   Venn diagrams representing OTUs numbers in the 
roots inoculated with intact and crushed spores of the fungal 
symbionts Funneliformis mosseae IN101C (A), and Septoglo-
mus sp. 14W1 (B). RXIND and RIND, roots inoculated with 

F. mosseae IN101C crushed or intact spores, respectively; 
RX14W1 and R14W1, roots inoculated with Septoglomus sp. 
14W1 crushed or intact spores, respectively
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to Haliangium tepidum, Niastella populi and Ohtaek-
wangia kribbensis.

The diversity of bacterial endophytic communi-
ties in roots inoculated with IN101C crushed or intact 
spores, assessed by Bray Curtis dissimilarity, was 
0.84 at the level of OTU, and 0.66 at the level of gen-
era, higher than the diversity of the endophyte com-
munities in roots inoculated with 14W1 spores, which 
was 0.56 and 0.44, respectively.

Overall, our data showed that the differential 
enrichment of bacterial endophytes in the roots of 
plants inoculated with intact or crushed spores (myc-
orrhizal vs. non-mycorrhizal roots) may be ascribed 

to the different composition of spore-associated bac-
terial communities.

Discussion

This study, for the first time, revealed that two 
AMF isolates, differing for their geographical ori-
gin (USA and EU), belonging to different genera 
and species and associated with diverse bacterial 
communities, differentially shaped the root endo-
phytic microbiome of the host plants. Our findings 
suggested also a differential recruitment depending 

Fig. 5   Distribution of endophytic bacterial genera in the roots 
of GF677 plants inoculated with intact or crushed spores of 
the two AMF isolates (Funneliformis mosseae IN101C and 
Septoglomus sp. 14W1). RXIND and RIND, roots inoculated 

with F. mosseae IN101C crushed or intact spores, respectively; 
RX14W1 and R14W1, roots inoculated with Septoglomus sp. 
14W1 crushed or intact spores, respectively
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on the ability of AMF to establish the mycorrhizal 
symbiosis.

Diversity and composition of bacterial microbiota 
associated with AMF spores

Present data show that the spores of the two AMF 
isolates were characterised by diverse bacterial 
communities. The common identified genera were 
81, while 24 were exclusively associated to 14W1 
and 100 to IN101C, consistently with previous 
works reporting that spore-associated bacteria dif-
fered among diverse AMF isolates. Such differential 
occurrence may be influenced by specific spore wall 
composition or spore exudates, supplying nutri-
ents for the nourishment and metabolic activity of 
the associated microbiota (Agnolucci et  al. 2015; 
Jansa et al. 2013; Roesti et al. 2005; Scheublin et al. 
2010; Xu et  al. 2023). In particular, large differ-
ences in the composition of spore-associated bac-
teria were found for the genera Massilia and Ram-
libacter, abundant in 14W1, and for Sphingomonas 
and Nocardioides, abundant in IN101C (Fig.  2). 
Another highly represented, but differentially dis-
tributed genus was Paenarthrobacter in 14W1 and 
IN101C, belonging to the phylum Actinobacteriota, 
whose members were regularly found in the myc-
orrhizosphere (Agnolucci et  al. 2015; Ames et  al. 
1989; Filippi et  al. 1998). The genus Ramlibacter 
was previously detected in Gigaspora margarita 
spore-associated microbiota and Rhizoglomus irreg-
ulare (syn. Rhizophagus irregularis) hyphosphere 
(Long et al. 2008; Wang et al. 2023).

Genera with representation larger than 1%, 
such as Bacillus, Paenibacillus, Sphingomonas, 

Fig. 6   Heatmap and hierarchical clustering analysis summa-
rizing the relative abundance of the bacterial OTUs found in 
the roots of GF677 plants inoculated with intact or crushed 
spores of the two AMF isolates (Funneliformis mosseae 
IN101C and Septoglomus sp. 14W1). RXIND and RIND, roots 
inoculated with F. mosseae IN101C crushed or intact spores, 
respectively; RX14W1 and R14W1, roots inoculated with Sep-
toglomus sp. 14W1 crushed or intact spores, respectively. One 
minus Pearson’s distance was used for clustering. Colours cor-
respond to OTUs’ relative abundance from low (blue) to high 
(red)

▸
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Rhizobium group, Ensifer, Massilia and Lysobacter, 
were frequently detected in AMF-associated bac-
terial communities (Ujvári et  al. 2021). Moreover, 
some bacterial taxa, such as members of the genera 
Stenotrophomonas, Lysobacter, Bradyrhizobium, 
Variovorax, Cupriavidus and Bacillus, were previ-
ously found capable of utilizing fungal “highways” 
as means of dispersion (Bravo et al. 2013; de Novais 
et al. 2020; Pion et al. 2013; Simon et al. 2015).

Spore‑associated bacteria affected root endophytic 
bacterial communities

For the first time, our data, obtained by Illumina 
sequencing, revealed that the two AM symbionts F. 
mosseae IN101C and Septoglomus sp 14W1, whose 
spores were associated with different bacterial com-
munities, significantly affected the diversity and 
composition of root bacterial endophytes (Fig. 5).

Previous studies reported that the taxonomic compo-
sition of root endophytes may be affected by host geno-
type (Agnolucci et al. 2019b; Walitang et al. 2018; Xu 
et  al. 2020), plant phenological stage (Marques et  al. 

2015; Van Overbeek and Van Elsas 2008), plant min-
eral nutrition and agricultural management practices 
(Hameed et al. 2015; Seghers et al. 2004), soil type and 
geographic location (Edwards et al. 2015; Samuel et al. 
2023; Schlaeppi et al. 2014). Present findings revealed 
that AMF represent an important microbial source driv-
ing the formation and composition of root endophytic 
bacterial communities.

Mycorrhizal colonization of roots inoculated with 
intact or crushed spores

The roots of GF677 micropropagated plants inocu-
lated with intact spores showed a good mycorrhizal 
colonization in plants inoculated with 14W1 and 
IN101C (Fig. 3). Such colonization levels are con-
sistent with previous data reporting large variability 
in the colonization ability of diverse AMF species 
and isolates (Giovannetti et  al. 2010; Giovannini 
et  al. 2020; Jansa et  al. 2008). Plants inoculated 
with crushed spores did not establish mycorrhizal 
colonization, demonstrating the correctness and 
suitability of our experimental device.

Fig. 7   Significant indicator species of root endophytic com-
munities associated with GF677 roots inoculated with intact or 
crushed spores of the two AMF isolates (Funneliformis mos-
seae IN101C and Septoglomus sp. 14W1). RXIND and RIND, 
roots inoculated with F. mosseae IN101C crushed or intact 

spores, respectively; RX14W1 and R14W1, roots inoculated 
with Septoglomus sp. 14W1 crushed or intact spores, respec-
tively. The scale indicates the Indval values. The boxed Indval 
values are significant at p < 0.05
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Root endophytic bacterial communities of plants 
inoculated with intact or crushed spores

The differential enrichment of bacterial endophytes in 
mycorrhizal roots was mainly ascribed to the different 
composition of spore-associated bacterial communi-
ties. The exclusive or differential occurrence of spe-
cific bacterial taxa in mycorrhizal or non-mycorrhizal 
roots may involve multiple mechanisms, possibly 
acting simultaneously and/or synergistically. In the 
case of the inoculation with crushed spores, unable 
to establish the symbiosis, the associated bacteria 
adjacent to the roots may behave following a general 
mechanism, common to many endophytes. Thus, the 
bacteria are able to colonize the roots after the recog-
nition of host plant exudates and adhesion to the root 
surface, penetrating either passively through wounds, 
root fractures, secondary root emergence points, or 
actively through the action of cell wall–degrading 

hydrolytic enzymes (Compant et al. 2010). Other fac-
tors facilitating root penetration are represented by 
motility structures and chemical signals aiding chem-
otaxis (Hardoim et al. 2015; Pinski et al. 2019).

On the other hand, in the case of the inoculation 
with intact spores, the establishment of the mycorrhi-
zal symbiosis may drive the differential recruitment 
of bacterial root endophytes in the host plants, as 
previously suggested by two works, which, alas, nei-
ther utilized only spores as inoculum, but mixtures of 
extraradical mycelium, spores and mycorrhizal root 
fragments, nor reported the composition of bacterial 
communities associated with the inoculum (Agno-
lucci et al. 2019b; Han et al. 2023). Actually, the large 
communities of bacteria living strictly associated 
with AMF spores and hyphae may specifically attach 
and migrate along the hyphae, that may function as 
highways for bacterial transfer into root tissues dur-
ing mycorrhizal colonization (de Novais et al. 2020; 

AMF hyphae and their exudates may 
boost the growth of specific bacterial 
taxa or limit the development of 
others, altering the composition of 
endophytic communities during 
mycorrhizal colonization 

Bacteria living strictly associated with 
AMF spores may specifically attach 
and migrate along the hyphae, 
functioning as highways for their 
transfer into root tissues during 
mycorrhizal colonization 

MECHANISM 2 MECHANISM 1 MECHANISM 3 

The interactions between AMF and 
host plants altering plant root 
physiology and exudates produce 
changes in the composition of 
endophytic communities during 
mycorrhizal colonization 

Fig. 8   Graphical representation of possible mechanisms involved in the enrichment of bacterial endophytes in mycorrhizal roots, 
putatively acting individually, simultaneously and/or synergistically
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Jiang et al. 2021; Toljander et al. 2007) (Mechanism 
1, Fig. 8). A second mechanism concerns the bacte-
rial microbiota actively interacting with the devel-
oping hyphae and their exudates, which may boost 
the growth of specific taxa or limit the development 
of others (Cruz and Ishii 2011; Filion et  al. 1999; 
Sharma et al. 2020; Toljander et al. 2007; Xavier and 
Germida 2003). Such a metabolically active environ-
ment may play a role in the selective recruitment of 
specific bacterial taxa, thus altering the composition 
of the communities associated with AMF spores and 
hyphae that could possibly colonize mycorrhizal roots 
(Mechanism 2, Fig.  8). Moreover, a further mecha-
nism may be active, involving the interaction between 
fungal symbionts and host plants, which could alter 
root physiology, exudates and endophytic bacterial 
microbiomes (Mechanism 3, Fig. 8).

PGP bacteria in root endophytic bacterial 
communities

The bacterial endophyte sequences obtained in this 
study were affiliated with bacterial OTUs previously 
retrieved from the roots of a number of plant taxa, 
including many important crop species (Adeleke 
et  al. 2021; Ujvári et  al. 2021). Most of them have 
been previously described as PGP bacteria, able to 
promote plant growth and nutrition. Among the most 
important, the phylum Actinobacteriota was repre-
sented by the genera Streptomyces and Actinoplanes. 
Isolates of Streptomyces produce several biologically 
active secondary metabolites and enzymes able to 
break down insoluble organic polymers, including 
chitin and cellulose (Seipke et al. 2012), while mem-
bers of the genus Actinoplanes possess PGP proper-
ties, inhibiting plant pathogens and producing a num-
ber of compounds, including antifungal compounds, 
siderophores and hydrolytic enzymes (El-Tarabily 
2003; Palaniyandi et  al. 2013; Parenti and Coronelli 
1979; Vértesy et al. 2000; Wang et al. 2022).

Members of the phylum Bacteroidota were mostly 
represented by the family Chitinophagaceae. In par-
ticular, the genus Niastella reached a consistently 
high relative abundance in all four root inoculation 
treatments, accounting for 12–30% of the total bac-
terial sequences. Niastella spp. were isolated from 
a wide range of soil and rhizosphere environments 
(Akter et  al. 2021; Weon et  al. 2006; Zhang et  al. 
2010) and detected in root endosphere (Agnolucci 

et  al. 2019b; Dai et  al. 2020; Gaggìa et  al. 2013), 
although its potential functional properties are not 
known. Interestingly, changes in the relative abun-
dance of the genus Haliangium (phylum Myxococ-
cota) in the root endosphere showed a notable enrich-
ment in mycorrhizal roots of IN101C. Haliangium 
spp. were detected as dominant myxobacterial taxa in 
soil (Dai et al. 2023; Petters et al. 2021) and in root 
endosphere (Chu et  al. 2021; Dai et  al. 2020; Lin 
et al. 2022). Their functional properties were mainly 
represented by the production of specific antibiotic 
substances (haliangicins and haliamide) (Kundim 
et al. 2003; Sun et al. 2016).

Within the phylum Pseudomonadota (Flores-
Félix et al. 2020) the genera Rhizobium, Ensifer and 
Bradyrhizobium were well represented in all inocu-
lation treatments. Rhizobia are well-known for their 
beneficial role in plant growth and nutrition, given 
their ability to fix nitrogen and to act as PGP bacteria 
(Vargas et al. 2017).

In this study, the family Comamonadaceae was 
represented by the genera Variovorax and Ramlibac-
ter. The genus Variovorax was found ubiquitously 
in soil and rhizosphere environments, encompassing 
metabolically diverse taxa, some known as functional 
PGP bacteria and/or plant endophytes (Han et  al. 
2011; Satola et al. 2013) producing ACC-deaminase 
(Belimov et  al. 2009; Chen et  al. 2013), IAA (Sun 
et al. 2018) and siderophores (Natsagdorj et al. 2019). 
Members of the genus Ramlibacter were reported to 
degrade cellulose (Kang et  al. 2022), which may be 
the reason behind their endophytic presence.

Conclusions

Two AMF isolates differing for taxonomy, geographi-
cal origin and spore-associated bacterial communi-
ties differentially modified the root microbiome of the 
host plants, thus showing that AMF play a key role as 
drivers of the endophytic bacterial communities colo-
nizing plant roots, representing an important means 
of transfer of their associated bacteria into plant roots. 
Data obtained using our original experimental sys-
tem, utilising intact and mechanically crushed AMF 
spores as inocula – the former able and the latter una-
ble to establish the symbiosis – suggested that AMF 
may induce differential recruitment of bacterial root 
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endophytes, depending on their capacity of root colo-
nization, as specific endophytes occurred exclusively 
in roots inoculated with intact spores.

In the years to come systematic studies on the dif-
ferential occurrence of root bacterial endophytes in 
mycorrhizal and non-mycorrhizal plants should be per-
formed, in order to obtain conclusive data on the abil-
ity of AMF-associated bacterial communities to estab-
lish in the root system as endophytes, and in what ratio.

A further interesting outcome arisen from our work is 
represented by the fact that most of the endophytic bacte-
rial genera retrieved in mycorrhizal roots and shared with 
spore-associated bacteria are known as possessing PGP 
properties. Targeted studies will answer the question as 
to whether such specific PGP activities, tested in vitro, 
are maintained when the bacteria become endophytes, 
thus promoting plant growth, nutrition and health.

This study increased our understanding of the 
complex network of microbial interactions that may 
positively affect crop production and represents the 
basis for the study of AMF and their associated bacte-
ria, whose functional complementarity and synergis-
tic activity might lead to the production of innovative 
inoculants, with the implementation of beneficial root 
endophytes for the sustainable intensification of food 
production systems.
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